Extracorporeal Membrane Oxygenation Simulation


Introduction

The medical profession has an established history of team-based approaches to managing the varying complexities of patients. Effective communication between team members has been recognized as a critical factor in safer healthcare delivery.[1] Multiple studies have highlighted the role of simulation-based training in healthcare settings that need rapid assessment, implementation of protocols, and efficient medical care delivery.[2] In medical simulation training, high-fidelity mannequins have also evolved. They can now provide physiologic feedback and have computer-generated programming that can offer the appropriate pathologic findings and responses to interventions.[3] Simulation-based training has been used in various professions and continues to be a method of teaching in the medical field. Hospital-based emergencies that require a team-based approach are of interest to simulation professionals. These scenarios are examples of situations that need group input, standardization of algorithms, and effective delivery of the appropriate treatments.[4]  

Function

Patients who have developed or are at risk of cardiorespiratory arrest require a multidisciplinary team to approach their care. Extracorporeal membrane oxygenation (ECMO) has become increasingly common for patients with cardiac failure, respiratory failure, or a combination of both. This development is evidenced by the growing number of centers offering ECMO as a therapy.[5] In pediatrics, the American Heart Association recommends ECMO as a consideration in patients with refractory cardiac arrest with a potentially reversible etiology.[6] ECMO is a method of supporting the cardiorespiratory system by mechanical means. Its use has been heavily described in the pediatric medical world and is now growing in popularity in the adult medical world. ECMO can support cardiac and respiratory support utilizing cannulae placed in large venous and arterial vessels in the body that bypasses the blood via a circuit with an oxygenator and a means to remove carbon dioxide. The newly oxygenated blood is circulated back to the patient through the arterial cannula. ECMO can also provide respiratory support through a specialized cannula inserted into one of the vena cava that can divert venous return through the ECMO circuit, where it will be oxygenated and returned through the same cannula in a different lumen towards the patient’s right heart. The former method is referred to as veno-arterial ECMO, and the latter is venovenous ECMO.[7][8] As ECMO is a highly specialized form of life support that requires technical expertise to recognize not only patients that qualify but also surgical expertise to place a patient on ECMO, specialists, critical care physicians, and nurses that are comfortable managing the patient and the circuit upon placing the patient on extracorporeal support. 

Curriculum Development

When developing a simulation-based curriculum, assessing the staffing that would be present and necessary for the scenario provided is important. In the case of ECMO, one would anticipate that there would be a need for multiple disciplinary teams during each step. At one center, the teams that were recognized as essential in developing an ECPR simulation-based curriculum included 1) the ICU team (nurses, respiratory therapists, intensive care physicians, and support staff), 2) a surgical team (cardiovascular or general surgeon, assistants, and nurses), and 3) ECMO team (that consisted of personnel that had specialized in preparing and maintaining the ECMO circuit).[9] A dedicated investment must be invested in repeatedly participating in this curriculum and accepting real-time feedback. Protocols must exist for the simulation that can easily relate to a real-life scenario. Such protocols may include the development of a checklist to ensure the patient is a proper candidate for ECMO therapy, a list of all the necessary equipment, assigned roles to key team members, and standardization of techniques for the surgical team. 

Procedural Skills Assessment

Methods utilized to assess the effectiveness of a simulation program for ECMO cannulation include but are not limited to pre-. Post-surveys of participants to evaluate their comfort with their role during the simulation, timing of when to decide to place a patient on ECMO to following successful cannulation, testing and timing ECMO specialists to prepare a circuit, and conducting chart reviews of ECMO cannulation times in patients before and after implementation of an ECMO simulation curriculum.[9] One program saw a decrease in medical errors with simulation-based training.[10]

Clinical Significance

Medical errors continue to remain a significant cause of death.[11]  Simulation-based training continues to become substantial in healthcare settings, where there are often complex and multidisciplinary approaches to decision-making. Placing a patient on extracorporeal support demands adequate staffing and license, leading to numerous individuals in a room where a profoundly ill patient needs guided and efficient medical care. The placement of patients onto ECMO, whether in a CPR situation or not, can be chaotic and stressful. The significance of developing a curriculum whose focus is to organize a large group of people of various degrees of training to communicate and work together effectively is essential in centers wanting to achieve excellence and efficiency in ECMO. A situation where a patient is unstable enough to require extracorporeal support is a highly stressful environment. Without effective communication and methods developed by simulation training, it could be a situation that would potentiate medical errors. There remains a difference in survival in pediatric and adult patients regarding extracorporeal support. The Extracorporeal Life Support Organization (ELSO) registry states that the survival rate for adults with pulmonary complications on ECMO is 66% and 55% for those with cardiac complications versus in pediatrics, where the survival rates are 67% for pulmonary and 68% for cardiac complications.[5] With these survival rates, there is always room for improvement regarding resuscitation length, time to ECMO cannulation, and fewer errors in assembling, setting up, and maintaining the ECMO circuit. These potential focuses are addressable with simulation.

Pearls and Other Issues

Simulation-based training has become an important and necessary field of education within the medical community. The need to use simulation with high-fidelity mannequins has become increasingly crucial in resuscitation training. Complex medical scenarios that require numerous personnel, such as ECMO simulation, can often be perceived as chaotic and loud. Utilizing simulation-based techniques to implement a curriculum can help streamline and assign roles in what may otherwise be a messy and physiologically complex situation. The goal would be to achieve a standardized approach to every step of the ECMO cannulation process - recognition of the proper candidates for ECMO therapy, checklists to ensure adequate equipment, a method to efficiently contact each member necessary, continuing resuscitation measures with minimal interruptions up until the patient is officially cannulated and on ECMO, and approaching mechanical issues to the ECMO circuit. 

Enhancing Healthcare Team Outcomes

Simulation-based training is effective in multiple medical environments. With the rise of centers offering ECMO as therapy for patients with cardiac and respiratory failure, it has become increasingly important to standardize our approach to a patient needing this level of support.[5] There is still room for improvement in the outcomes of patients that require ECMO.[5] By developing an ECMO simulation curriculum that involves multiple disciplines, coordination between the teams could be improved. Placing a patient on ECMO, whether it is during cardiopulmonary resuscitation or not, can prove to be unorganized and stressful. This is where the role of simulation, with participation from everyone from each dedicated discipline, can help each team practice interprofessional communication and coordinate care to the same goal of successfully placing a patient on ECMO. The goals should be the same: to lower medical errors that can often happen in high-stress environments, improve outcomes of patients on ECMO as the time to placement, especially during CPR, could be lessened, and optimize team performance.   Research related to  ECMO simulation has shown improvement in cannulation time, improvement in setting up ECMO circuits, and improvement in the perception of team dynamics.[9][12][13] [Level 4]


Details

Updated:

11/26/2022 6:03:08 PM

References


[1]

Weaver SJ,Dy SM,Rosen MA, Team-training in healthcare: a narrative synthesis of the literature. BMJ quality & safety. 2014 May     [PubMed PMID: 24501181]

Level 2 (mid-level) evidence

[2]

Armenia S, Thangamathesvaran L, Caine AD, King N, Kunac A, Merchant AM. The Role of High-Fidelity Team-Based Simulation in Acute Care Settings: A Systematic Review. Surgery journal (New York, N.Y.). 2018 Jul:4(3):e136-e151. doi: 10.1055/s-0038-1667315. Epub 2018 Aug 13     [PubMed PMID: 30109273]

Level 1 (high-level) evidence

[3]

Cant RP,Cooper SJ, The value of simulation-based learning in pre-licensure nurse education: A state-of-the-art review and meta-analysis. Nurse education in practice. 2017 Nov     [PubMed PMID: 28843948]

Level 1 (high-level) evidence

[4]

Murphy M,Curtis K,McCloughen A, What is the impact of multidisciplinary team simulation training on team performance and efficiency of patient care? An integrative review. Australasian emergency nursing journal : AENJ. 2016 Feb     [PubMed PMID: 26614537]


[5]

Thiagarajan RR,Barbaro RP,Rycus PT,Mcmullan DM,Conrad SA,Fortenberry JD,Paden ML, Extracorporeal Life Support Organization Registry International Report 2016. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2017 Jan/Feb;     [PubMed PMID: 27984321]


[6]

Kleinman ME,Chameides L,Schexnayder SM,Samson RA,Hazinski MF,Atkins DL,Berg MD,de Caen AR,Fink EL,Freid EB,Hickey RW,Marino BS,Nadkarni VM,Proctor LT,Qureshi FA,Sartorelli K,Topjian A,van der Jagt EW,Zaritsky AL, Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010 Nov 2;     [PubMed PMID: 20956230]


[7]

Mosier JM,Kelsey M,Raz Y,Gunnerson KJ,Meyer R,Hypes CD,Malo J,Whitmore SP,Spaite DW, Extracorporeal membrane oxygenation (ECMO) for critically ill adults in the emergency department: history, current applications, and future directions. Critical care (London, England). 2015 Dec 17     [PubMed PMID: 26672979]

Level 3 (low-level) evidence

[8]

Rais-Bahrami K,Van Meurs KP, Venoarterial versus venovenous ECMO for neonatal respiratory failure. Seminars in perinatology. 2014 Mar     [PubMed PMID: 24580762]


[9]

Su L,Spaeder MC,Jones MB,Sinha P,Nath DS,Jain PN,Berger JT,Williams L,Shankar V, Implementation of an extracorporeal cardiopulmonary resuscitation simulation program reduces extracorporeal cardiopulmonary resuscitation times in real patients. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2014 Nov;     [PubMed PMID: 25162513]


[10]

Puślecki M,Ligowski M,Dąbrowski M,Stefaniak S,Ładzińska M,Ładziński P,Pawlak A,Zieliński M,Dąbrowska A,Artyńska A,Gezela M,Sobczyński P,Szarpak Ł,Perek B,Jemielity M, BEST Life-     [PubMed PMID: 30043501]


[11]

Makary MA, Daniel M. Medical error-the third leading cause of death in the US. BMJ (Clinical research ed.). 2016 May 3:353():i2139. doi: 10.1136/bmj.i2139. Epub 2016 May 3     [PubMed PMID: 27143499]


[12]

Thomas F,Chung S,Holt DW, Effects of ECMO Simulations and Protocols on Patient Safety. The journal of extra-corporeal technology. 2019 Mar     [PubMed PMID: 30936583]


[13]

Alsalemi A,Tanaka L,Ogino M,Disi MA,Alhomsi Y,Bensaali F,Amira A,Alinier G, A skills acquisition study on ECMOjo: a screen-based simulator for extracorporeal membrane oxygenation. Perfusion. 2020 Mar     [PubMed PMID: 31303136]