• Sign Up

Use coupon code EXTENDEDHOLIDAY2020 at checkout for 20% off

Hyperbaric Treatment of Crush Injury And Compartment Syndrome

  • Article Library
  • Hyperbaric Treatment of Crush Injury And Compartment Syndrome

Hyperbaric Treatment of Crush Injury And Compartment Syndrome

Article Author:
Tom Herron
Article Author:
Anthony Haftel
Article Author:
Klaus Torp
Article Editor:
Jeffrey Cooper
Updated:
11/8/2020 6:45:22 AM
For CME on this topic:
Hyperbaric Treatment of Crush Injury And Compartment Syndrome CME
PubMed Link:
Hyperbaric Treatment of Crush Injury And Compartment Syndrome

Introduction

Human limbs are composed of muscle groups divided by fascial membranes into anatomic compartments. When a limb sustains trauma (i.e., crush injury, fractures, repeated injections or infusions, or overuse), swelling and inflammation within a compartment may increase rapidly. Consequently, the acute compartment syndrome (ACS) results when compartment pressures increase to the point that tissue perfusion is compromised.[1][2]

Etiology

ACS has both traumatic and nontraumatic etiologies. Long bone fractures, especially comminuted fractures, account for the highest proportion of ACS cases. The majority of ACS syndromes arise from a severe leg injury (i). In one study, 414 acute tibial fractures were evaluated. Mid-shaft tibial fractures had the highest rate of compartment syndrome(10%) and accounted for 40% of all trauma-related ACS. Trauma without fracture can also cause ACS. Examples include crush injury, severe thermal burns, overly constrictive bandages, penetrating trauma, and damage to vascular structures. Nontraumatic causes include vascular occlusion, embolus, ischemia-reperfusion injury, bleeding disorders, vascular disease, nephrotic syndrome, envenomations and bites, extravasation of intravenous fluids, injection of recreational drugs, and prolonged limb compression from tight casts or tourniquets. Younger patients account for the majority of cases. [3][4][5][6]

Epidemiology

ACS occurs most often in patients younger than 35 years. The highest incidence is seen in young men, particularly after fractures of the tibial diaphysis and distal radius. Crush injuries among civilians occur most often due to falls or extrication episodes such as in building collapses, earthquakes, civil unrest, explosions, or high-speed motor vehicle accidents.

Pathophysiology

ACS occurs when tissue fluid pressure exceeds capillary perfusion pressure to the muscle and nerves within an anatomic compartment. The muscle fascia and other connective tissues are inelastic. As the pressure builds, the venous return eventually is halted, which results in the transudation of fluid. This sets off a cascade of events, leading to an edema-hypoxia cycle. Once edema is severe enough to cause hypoxia, adhesion molecules are activated, leading to the attachment of neutrophils, a release of reactive oxygen species, and severe vasoconstriction. This process results in reperfusion injury and is the basis behind the no-reflow phenomenon. It is estimated muscle necrosis starts to occur within 2-3 hours of injury in as many as 35% of patients. [5][3][7]

History and Physical

The patient history should focus on determining if one of the traumatic or nontraumatic events mentioned above has occurred, thus placing a patient at risk for ACS. Underlying etiologies such as bleeding diathesis, renal disease, peripheral vascular disease, or cardiac arrhythmias should be explored. Any history of intravenous or intramuscular drug injection should be sought. On physical exam, impending ACS is characterized by the five ‘Ps’-increasing Pain out of proportion to appearance, Paresthesia, Paresis, Pallor, and distal Pulse deficit. Discomfort with passive stretch and/or tenseness of a muscle compartment are common. The major compartments in the leg are the anterior, lateral, deep posterior, and superficial posterior. The two significant compartments of the forearm are the dorsal and volar. Anterior compartment syndrome of the leg is characterized by pain exacerbated by plantarflexion. The muscles of this compartment are the tibialis anterior, the extensor digitorum longus, the extensor hallucis longus, and the peroneus tertius. Lateral compartment syndrome is characterized by pain exacerbated by inversion of the foot. The muscles of this compartment are the peroneus longus and the peroneus brevis. The superficial posterior compartment of the leg contains the soleus, gastrocnemius, and the plantaris muscles, and the superficial posterior compartment syndrome is characterized by pain on dorsiflexion of the foot. The deep posterior compartment contains the tibialis posterior, flexor hallucis longus, the flexor digitorum longus, and the popliteus muscles. Pain exacerbated by extending the toes is characteristic of this compartment syndrome. The volar compartment syndrome of the forearm has pain exacerbated by the extension of the wrist. The dorsal compartment syndrome has pain worsening on wrist flexion versus resistance.

Evaluation

Laboratory tests have limited use in ACS, but may show arrhythmia, coagulopathy, azotemia, or occult drug use. Abnormalities such as elevated serum creatine phosphokinase (CPK>2000) and myoglobinuria are typically seen as muscle breakdown ensues. Diagnosis is established by clinical findings and measurement of compartment pressures. Saline manometry (Whiteside procedure) using pressure transducers is the test of choice. Any intercompartmental pressure above 30mmHg in a symptomatic patient is confirmatory of ACS. Also, any patient with a Delta Pressure (DP) less than 30 is similarly confirmatory. DP = Diastolic Pressure – Compartment Pressure. Any such findings in a symptomatic patient must have a stat surgical consult for possible fasciotomy. Needle placement for saline manometry is specific to the compartment under suspicion. The anterior compartment of the leg is entered approximately one third the distance down the tibia from the tibial tuberosity(level), and 1 cm lateral to the tibial edge, with the needle going in approximately 1-3cm. The lateral compartment is entered at the same level as above and enters right at the fibula's edge and 1cm in. The superficial posterior compartment is entered at the same level as above, and at a point, 3-5cm medial to the mid posterior line, going in 2-4 cm. Finally, at the same level, the deep posterior compartment is entered just medial to the medial tibial edge and aimed in the fibula's direction, going in 2-4 cm. Other modalities have been used to non-invasively measure intercompartmental pressures, such as ultrasound, laser Doppler flow, and infrared spectroscopy. Other invasive studies such as muscle pH, muscle glucose level, and muscle pO2 have been studied; however, saline manometry remains the gold standard. Interobserver variation has been a problem, and continuous monitoring seems more sensitive and specific than a one-time measurement. [3]

Treatment / Management

Any dressing, splint, cast, tourniquet, or other restrictive covering should be removed for a limb at risk for ACS. The limb should be placed at the heart level to avoid both reductions in arterial flow and dependent swelling. Frequent neurocirculatory checks should be performed every few hours in a limb in with suspected ACS. There are three stages of progression to ACS- ‘suspected,’ ‘impending,’ and ‘established.’ Confirmed (‘established’) cases with symptomatology and abnormal manometrics demand immediate surgical decompression with fasciotomy. However, patients may present with equivocal signs and symptoms and uncertain manometrics. These patients are categorized as ‘suspected.’ Progression of ACS from the ‘suspected stage’ to ‘impending stage’ is based on the worsening of the clinical findings (5’Ps’) and/or intermediate compartment pressure measurements. In the ‘impending stage,’ hyperbaric oxygen (HBOT) therapy can be implemented to prevent possible progression to the ‘established stage.’ The typical treatment regimen consists of 3 HBOT treatments at 2.5 Atm for 90-120 minutes (twice daily on day one, single treatment on day two). However, the use of HBOT should never delay fasciotomy if a patient has progressed to ‘established’ ACS based on manometric confirmation and/or severe symptoms. When fasciotomy is performed, HBO2 can be applied for various post-fasciotomy complications, including ischemic muscle, unclear demarcation of viable and non-viable muscle, massive swelling, prolonged ischemia (>six hours), vascular compromise of flap or graft, and residual neuropathy. HBOT has been shown to increase tissue oxygenation 20 fold. HBOT increases tissue ATP and NADPH oxidase, promoting wound healing by encouraging vascular growth and collagen formation. NADPH also assists in the killing of bacteria by super peroxidation. The three main efficacies of HBOT are to reduce edema, increase tissue oxygenation, and reduce post-reperfusion injury. However, to date, no large scale meta-analysis has been done on the use of HBOT in crush injury and ACS. HBOT is listed as an approved use for ACS from crush injury by the Undersea & Hyperbaric Medical Society(UHMS), but no large concordant double-blind RCTs exist on its use. The European Committee for Hyperbaric Medicine gave HBOT a Grade B recommendation (moderate level of evidence) for open fractures with crush injury, and only a Grade C (low level of evidence) for crush injury without fracture. [3][7][8][9][10][11]

 

Differential Diagnosis

  • Infection
  • Rhabdomyolysis
  • Necrotizing fasciitis
  • Myo-contusion
  • Hematoma
  • Myositis

Prognosis

If ACS is caught and treated early with a decompressive fasciotomy, the outcomes are favorable. One study in 1976 found a fasciotomy done within 12 hours of the onset of clinical symptoms (motor weakness, stretch pain, etc.) resulted in the normal function of 68% of patients. If the fasciotomy was delayed beyond 12 hours, only 8% of patients had normal function. Fasciotomies have complications, including additional surgeries for delayed wound closure, skin grafting, pain, cosmetic deformity, nerve injury, muscle weakness, and chronic venous insufficiency.

Complications

Muscle necrosis may occur as early as 2-3 hours post-injury. Repeated debridement is performed every 48 to 72 hours for muscle necrosis until the wound remains stable. Nerve deficits with permanent loss may be sustained as early as one-hour post-injury. Other complications include muscle contractions, sepsis, amputation. Skin grafts are frequently used to cover large skin loss, and these frequently become ischemic. Associated fractures may harbor osteomyelitis, suffer mal-union, Oxygen toxicity, pneumothorax, ruptured tympanic membrane, sinus squeeze, and tooth squeeze are some complications of HBOT. Sudden shortness of breath and chest pain should immediately suggest pneumothorax. The ascent from pressurization should be slowed to 1psi/ min. When 1Atm is achieved, the patient should immediately be evaluated for pneumothorax and tension pneumothorax and treated accordingly. [1][3][8][9]

Consultations

The patient with compartment syndrome should be evaluated by a surgeon to determine whether urgent fasciotomies and or other surgical procedures are necessary to save life or limb. A consultation with a hyperbaric physician or orthopedist can be beneficial when the stages of the compartment syndrome are unclear or do not require urgent fasciotomy. 

Deterrence and Patient Education

Patients need to be educated about the cause and progression of this disease to participate in the monitoring of the symptoms and alert the provider of any changes in symptoms early.

Enhancing Healthcare Team Outcomes

Crush injuries of the extremities are best managed by an interprofessional team that includes a surgeon, HBO specialist, wound specialist, ICU nurses, radiologist, orthopedic surgeon, vascular surgeon, and an internist. The key is to resuscitate the patient and salvage viable tissue. Once debridement and fasciotomy have been performed, HBO therapy may help improve the salvage rate of viable tissue. 

The outcomes of patients with crush injuries are guarded as many individuals also have other associated injuries.


References

[1] Torp KD,Murphy-Lavoie HM, Hyperbaric, Acute Traumatic Ischemia 2019 Jan;     [PubMed PMID: 30725699]
[2] Bhutani S,Vishwanath G, Hyperbaric oxygen and wound healing. Indian journal of plastic surgery : official publication of the Association of Plastic Surgeons of India. 2012 May;     [PubMed PMID: 23162231]
[3] McMillan TE,Gardner WT,Schmidt AH,Johnstone AJ, Diagnosing acute compartment syndrome-where have we got to? International orthopaedics. 2019 Nov     [PubMed PMID: 31468110]
[4] The effect of hyperbaric oxygen in crush injuries and skeletal muscle-compartment syndromes., Strauss MB,, Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc, 2012 Jul-Aug     [PubMed PMID: 22908841]
[5] [Muscle crush injury and crush syndrome]., Reingardienė D,Jodžiūnienė L,Lažauskas R,, Medicina (Kaunas, Lithuania), 2010     [PubMed PMID: 20944453]
[6] Porter K,Greaves I, Crush injury and crush syndrome: a consensus statement. Emergency nurse : the journal of the RCN Accident and Emergency Nursing Association. 2003 Oct;     [PubMed PMID: 14603647]
[7] Kimmel HM,Grant A,Ditata J, The Presence of Oxygen in Wound Healing. Wounds : a compendium of clinical research and practice. 2016 Aug     [PubMed PMID: 27560469]
[8] Shah J, Hyperbaric oxygen therapy. The journal of the American College of Certified Wound Specialists. 2010     [PubMed PMID: 24527137]
[9] Leung JK,Lam RP, Hyperbaric oxygen therapy: its use in medical emergencies and its development in Hong Kong. Hong Kong medical journal = Xianggang yi xue za zhi. 2018 Apr     [PubMed PMID: 29658485]
[10] Mathieu D,Marroni A,Kot J, Tenth European Consensus Conference on Hyperbaric Medicine: recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment. Diving and hyperbaric medicine. 2017 Mar     [PubMed PMID: 28357821]
[11] Francis A,Baynosa RC, Hyperbaric Oxygen Therapy for the Compromised Graft or Flap. Advances in wound care. 2017 Jan 1     [PubMed PMID: 28116225]